

Руководство по эксплуатации MM-22x, MM-52x

© 1998 — 2024 Zelax. Все права защищены.

Редакция 14 от 04.12.2024 г.

Россия, 124365 Москва, г. Зеленоград, ул. Заводская, дом 1Б, строение 2 Телефон: +7 (495) 748-71-78 (многоканальный) • <u>http://www.zelax.ru</u> Отдел технической поддержки: <u>tech@zelax.ru</u> • Отдел продаж: <u>sales@zelax.ru</u>

Оглавление

1 Введение	4
2 Структура и функциональное назначение составных частей изделия	5
2.1 Порт	7
2.2 Слот	7
2.3 Модули МІМ и МІМЕ	7
2.4 Контроллер	8
2.5 Кросс-коннектор	8
2.6 Виртуальный контроллер	
	14
2.7.1 Интерфейс NDLC	۲4۱4 1 <i>1</i>
273 Интерфейс Stramment	+۱ 14
274 Интерфейс Console	14
2.8 Коммутатор Ethernet	
2.8.1 Интерфейс Fast Ethernet	
3 Модификации изделий и правила заказа	
3.1 Совместимость изделий и модулей МІМ/МІМЕ	19
4 Технические данные	20
4.1 Основные параметры	20
4.2 Функциональные возможности	20
4.3 Параметры портов	23
4.3.1 Порт Ethernet	23
4.3.2 Слот SFP	23
4.3.3 I lopt Console	
4.4 Внешнии вид	
4.4.1 Передняя панель	
	20 20
4.5 Конструктивное исполнение и электропитание 4.5.1 Особенности электропитания молификации MM-52x-UNI	
4.5.1 Особенности электропитания модификации ими-52х-бти	
47 Усповия эксплуатации	
5 Комплект поставки	
6 Установка и подключение	
6.1 Установка	
6.2 Подключение	
7 Управление	
7.1 Способы управления изделием	
7.1.1 Локальное управление через порт Console	
7.1.2 Удалённое управление по протоколу Telnet	
7.1.3 Удалённое управление по протоколу SSH	
7.2 Программное обеспечение и файловая система	
7.3 Интерфеис пользователя и режимы работы	
 выстрая настроика	
9 Сохранение и загрузка конфигурации	43 13
9.1 Сохранение конфигурации на селвере	43 43
9.3 Загрузка конфигурации с сервере	
9.4 Восстановление заволских настроек	
10 Обновление программного обеспечения	
10.1 Определение аппаратной версии ММ-22х и ММ-52х	
10.1.1 Определение аппаратной версии устройства с использованием интерфейса командн	ой
строки 45	
10.1.2 Определение аппаратной версии устройства по серийному номеру	45
10.2 Загрузка новой версии программного обеспечения	
10.3 Процедура обновления ПО с версий ниже 1.11.2.3	
10.4 Загрузка новой версии программного обеспечения в режиме загрузчика	
10.5 Загрузка новои версии загрузчика	
10.0 процедура ооновления загрузчика с версии ниже 1.2.0-zelax-1.6-svn302/М	
га секомендации по устранению неисправностей	
12 Гараптии изготовителя Припожение 1 Назначение контактов портов Ethernet	55 56

Приложение 2.	Назначение контактов порта Console	56
Приложение 3.	Схема переходника А-006	56
Приложение 4.	Схема кабеля А-010	57
Приложение 5.	Назначение контактов клеммной колодки для MM-52xRC-UNI	57
Приложение 6.	Назначение контактов клеммной колодки для MM-22xRC-UNI-f-DC60	57

1 Введение

Мультисервисная платформа Speedway включает в себя основные телекоммуникационные устройства: мультиплексор, коммутатор Ethernet, маршрутизатор, модем и голосовой шлюз, что позволяет применять его как в традиционных сетях TDM, так и в сетях с коммутацией пакетов. Используя различные сочетания этих коммутационных элементов и их функциональности можно получить практически любое телекоммуникационное устройство — мультиплексор, инверсный мультиплексор, маршрутизатор, Ethernet-мост, мини-DSLAM, модем, конвертер интерфейсов, голосовой шлюз и т.д. (Рис. 1).

Рис. 1 — Оборудование на базе платформы Speedway

Модульная конструкция платформы Speedway обеспечивает максимальную гибкость конфигурации, возможность постепенного масштабирования сети и внедрения новых технологий без замены всего оборудования. Широкий выбор дополнительных модулей позволяет подключаться к различным каналам связи и расширять функциональность оборудования по мере необходимости.

Всё оборудование Speedway оснащено высокопроизводительными процессорами с WAN и Ethernet-портами, которые обеспечивают подключение к глобальным и локальным сетям передачи данных и обработку трафика на втором, третьем и четвёртом уровнях сетевой модели OSI.

2 Структура и функциональное назначение составных частей изделия

Данный раздел содержит пояснения относительно терминологии, сведения об общей структуре изделия и функциональном назначении его составных частей.

Изделия MM-22x и MM-52x представляют собой базовый модуль с портами Console и Ethernet и слотами для установки модулей расширения (Рис. 2, Рис. 3).

Рис. 2 — Структурная схема изделий ММ-221, ММ-222 и ММ-522

Рис. 3 — Структурная схема изделия ММ-225, ММ-525

Рис. 4 — Структурная схема изделия ММ-227, ММ-527

Базовый модуль изделий ММ-22х и ММ-52х содержит:

- процессор;
- один порт Ethernet, четыре порта FastEthernet или три порта FastEthernet и слот SFP;
- коммутатор Ethernet;
- кросс-коннектор;
- один, два, четыре или пять слотов для установки модулей расширения;
- управляющий порт Console.

2.1 Порт

Порт представляет собой разъём, к которому с помощью кабеля подключается то или иное устройство или линия связи. Порт реализует определённый интерфейс. На контакты разъема может быть выведено один или два интерфейса.

2.2 Слот

Слот — место для установки модуля расширения. Базовый модуль содержит один, два или пять слотов.

2.3 Модули МІМ и МІМЕ

Модули MIM (MIM — Mezzanine Interface Module), MIME (MIME — Mezzanine Interface Module Enhanced) мезонинные интерфейсные модули и расширенные мезонинные интерфейсные модули, для краткости, именуемые модулями расширения. Модули MIM и MIME предназначены для подключения

изделия к различным сетям передачи данных, организации голосовых каналов и расширения функциональных возможностей устройства.

Модули устанавливаются в слоты изделия.

2.4 Контроллер

Контроллер — компонент, размещённый в модуле расширения и предназначенный для обслуживания порта на физическом уровне. Контроллер выполняет, например, такие функции: выделяет из принимаемого сигнала данные и синхросигнал, следит за целостностью соединения линии, подключённой к порту, вычисляет соотношение "сигнал-шум", регистрирует и анализирует ошибки, образовывает голосовые каналы, генерирует тональный сигнал и т. п. В зависимости от типа и модели изделия возможно несколько вариантов соединения контроллера.

В изделиях ММ-22х и ММ-52х контроллер может быть соединён (см. раздел 2):

- непосредственно с одним из интерфейсов HDLC процессора (1);
- с одним из интерфейсов HDLC процессора через кросс-коннектор (3 4 5);
- непосредственно с другим контроллером, находящимся на этом же модуле (2).
- непосредственно с другим контроллером, находящимся на другом модуле (7);
- с другим контроллером, находящимся на этом же модуле, через кросс-коннектор (5 — 6);
- с другим контроллером, находящимся на другом модуле, через кросс-коннектор (5 — 8 — 9);
- с общим интерфейсом SPI процессора (только контроллеры FXS/FXO/PTT/Async) (10).

Непосредственно соединяются следующие контроллеры:

- E1 E1;
- UPI UPI;
- E1 UPI, UPI E1.

2.5 Кросс-коннектор

Кросс-коннектор — компонент, размещённый в базовом модуле и предназначенный для коммутации и мультиплексирования данных. Кросс-коннектор обеспечивает мультиплексирование данных из различных контроллеров и интерфейсов HDLC.

Особенности работы кросс-коннектора:

- с помощью кросс-коннектора можно осуществлять коммутацию между любыми синхронными контроллерами (E1, SHDSL, UPI, др.). При этом коммутируются либо выбранные таймслоты, либо все таймслоты контроллера;
- контроллеры FXS/FXO можно подключать через кросс-коннектор в режиме TDM;
- с помощью кросс-коннектора можно осуществлять коммутацию между интерфейсом HDLC и любым контроллером (кроме FXS/FXO/PTT/Async). При этом коммутируются либо выбранные таймслоты, либо все таймслоты контроллера.

Примеры включения кросс-коннектора приведены на Рис. 5 - Рис. 12:

Рис. 5 – Передача данных V.35 через канал Е1

Рис. 6 – Мультиплексирование данных V.35 и Е1 в канал Е1

Рис. 7 – Передача данных Ethernet/IP через выбранные таймслоты канала E1

Рис. 8 – Передача данных Ethernet/IP через выбранные таймслоты потока E1 в режиме извлечениявставки

Рис. 9 – Кросс-коммутация данных Е1 между четырьмя потоками Е1

Рис. 10 – Передача данных Ethernet/IP, V.35 и E1 через канал SHDSL

Рис. 11 – Передача данных Ethernet/IP и четырёх потоков E1 через канал V.35

Рис. 12 – Передача двух каналов RS-232 через поток E1 и соединение двух каналов RS-232

2.6 Виртуальный контроллер

Виртуальный контроллер — компонент, размещённый в базовом модуле или модуле расширения. Назначение и функциональные возможности виртуального контроллера определяется его типом.

Тип контроллера	Назначение	Размещение
IMUX	Объединение на физическом уровне	Базовый модуль изделий
	нескольких каналов передачи данных для	MM-22х и MM-52х
	увеличения пропускной способности	
TDMoP	Сжатие голосовых данных таймслотов потока	Модуль MIM-VLT32
	E1	
VLT	Объединение нескольких потоков данных от	Модуль MIM-VLT32
	контроллеров TDMoP и передача их через	
	TDM-канал	
BACKUP	Резервирование потоков данных	Базовый модуль изделий
		MM-22х и MM-52х

Табл. 1 — Описание контроллеров

Примеры использования контроллера IMUX приведены на Рис. 13 и Рис. 14. Более подробная информация о контроллерах TDMoP и VLT приведена в техническом описании на модуль MIM-VLT32.

Примеры использования контроллера ВАСКUР приведены на Рис. 15 и Рис. 16.

Рис. 13 — Передача данных Ethernet/IP через четыре потока E1

Рис. 14 — Переча данных V.35 через два потока E1

Рис. 15 — Передача потока Е1 через РРЛ с резервированием по выделенной линии связи

Рис. 16 — Передача данных V.35 по ВОЛС с резервированием через РРЛ

2.7 Процессор

Процессор — компонент, размещённый в базовом модуле и предназначенный для обработки данных, поступающих на его интерфейсы.

Процессор имеет интерфейсы четырех типов:

- HDLC (Serial);
- SPI;
- Ethernet;
- Управляющий.

Интерфейсы HDLC предназначены для подключения к процессору контроллеров, размещенных в модулях расширения, кроме контроллеров FXS/FXO/PTT/Async.

Интерфейс SPI предназначен для подключения к процессору контроллеров FXS/FXO/PTT/Async, размещенных в модулях расширения.

Интерфейс Ethernet предназначен для подключения к процессору порта Ethernet, размещенного в базовом модуле.

Управляющий интерфейс предназначен для подключения порта Console, размещенного в базовом модуле.

2.7.1 Интерфейс HDLC

Интерфейс HDLC обеспечивает взаимодействие процессора с контроллером, размещенным в модуле расширения. Интерфейс HDLC может быть подключен к любому контроллеру любого модуля расширения (кроме контроллеров FXS/FXO/PTT/Async). Интерфейс HDLC характеризуется логическими параметрами, такими как IP-адрес, маска сети, тип инкапсуляции и т. п.

2.7.2 Интерфейс SPI

Интерфейс SPI обеспечивает взаимодействие процессора с контроллерами FXS/FXO/PTT/Async, размещенными в модулях расширения. Интерфейс SPI подключается к контроллерам FXS/FXO/PTT/Async автоматически и не нуждается в дополнительной настройке.

2.7.3 Интерфейс Ethernet

Интерфейс Ethernet обеспечивает взаимодействие процессора с портом Ethernet. Интерфейс Ethernet характеризуется физическими и логическими параметрами, такими как скорость передачи данных, тип инкапсуляции, режим обмена данными, IP-адрес, маска сети и т. п.

2.7.4 Интерфейс Console

Управляющий интерфейс Console обеспечивает локальное управление изделием.

2.8 Коммутатор Ethernet

Коммутатор Ethernet — компонент, размещённый в базовом модуле и предназначенный для обработки данных, поступающих с портов Ethernet и от процессора, на канальном уровне.

Коммутатор имеет два режима работы:

- с обработкой VLAN коммутатор обеспечивает работу портов Ethernet в режиме доступа (access) или в транковом режиме (trunk) и производит обработку кадров Ethernet на основе тегов VLAN и MAC-адресов. Максимальное количество обрабатываемых VLAN — 16;
- без обработки коммутатор обеспечивает «прозрачную» передачу кадров Ethernet и производит обработку кадров Ethernet на основе MAC-адресов.

В обоих режимах работы коммутатор обеспечивает:

- возможность настройки скорости и режима обмена каждого порта;
- поддержку качества обслуживания (QoS).

2.8.1 Интерфейс Fast Ethernet

Интерфейс Fast Ethernet обеспечивает взаимодействие коммутатора с одним из четырех портов Ethernet.

Интерфейс Fast Ethernet характеризуется физическими параметрами, такими как скорость передачи данных, тип инкапсуляции, режим функционирования и обмена данными и т. п.

Обязательным параметром интерфейса Fast Ethernet является режим функционирования. Параметр имеет два значения: режим доступа (access) и транковый режим (trunk).

Режим доступа (access)

Режим предназначен для обработки входящих нетегированных кадров Ethernet. В данном режиме интерфейсу назначается идентификатор виртуальной локальной сети (VLAN), который добавляется ко всем входящим нетегированным кадрам. После добавления идентификатора кадры подвергаются дальнейшей обработке. Входящие тегированные кадры отбрасываются.

На выход из данного интерфейса допускаются только кадры, идентификатор VLAN которых совпадает с идентификатором VLAN, назначенным этому порту Ethernet. Кадры с другими идентификаторами VLAN не допускаются к отправке через этот порт.

Интерфейсы, имеющие одинаковые идентификаторы VLAN, функционируют в режиме коммутации кадров на канальном уровне (коммутатор Ethernet) и находятся в одном широковещательном домене. Интерфейсы, имеющие различные идентификаторы VLAN, функционируют независимо друг от друга и находятся в разных широковещательных доменах.

По умолчанию все порты функционируют в режиме доступа и имеют идентификатор VLAN 1.

Транковый режим (trunk)

Транковый режим (trunk) предназначен для обработки входящих тегированных кадров Ethernet (кадров с идентификатором VLAN). Входящие нетегированные кадры отбрасываются. Обрабатываются кадры только активных VLAN. Число активных VLAN не более 16.

3 Модификации изделий и правила заказа

Изделия MM-22х и MM-52х выпускается в различных модификациях. Модификации различаются конструктивным исполнением, напряжениями питания и функциональными возможностями.

MM-22х по техническим параметрам принадлежат к двум группам: І и ІІ. Производительность устройств группы І 4500 пакетов/с, производительность устройств группы ІІ 21500 пакетов/с.

Все модификации изделий имеют консольный порт и порты Ethernet (один, четыре или три порта Ethernet и один слот SFP), а также слоты (один, два, четыре или пять) для установки дополнительных интерфейсных модулей типа MIM или MIME.

Для заказа изделий MM-22х необходимо указать требуемую модификацию, используя следующую формулу заказа:

MM-22xRC-UNI-f-р, где

- х Версия изделия (определяет количество интерфейсов HDLC и портов Ethernet):
 - 1 два интерфейса HDLC и один порт Ethernet;
 - 2 четыре интерфейса HDLC и один порт Ethernet;
 - 5 два интерфейса HDLC и четыре порта Ethernet;
 - 7 два интерфейса HDLC, три порта Ethernet и один слот SFP.

f — Вариант конструктивного исполнения:

- <пусто> в настольном пластмассовом корпусе;
- I без корпуса, для установки в корзину P-12;
- К без корпуса, для установки в корзину Р-510;
- Т в металлическом корпусе высотой 1U для установки в стойку 19".

р — Вариант питания:

- АС9 питание от сети переменного тока напряжением 9 В (при использовании внешнего сетевого адаптера, входящего в комплект, обеспечивается питание от сети переменного тока 220 В);
- DC60 питание от сети постоянного тока напряжением 20...72 B;
- <пусто> питание от сети переменного тока напряжением 220 В.

Для заказа изделий MM-52х необходимо указать требуемую модификацию, используя следующую формулу заказа:

MM-52xRC-UNI-р, где

х — Версия изделия (определяет количество интерфейсов HDLC и портов Ethernet):

- 2 четыре интерфейса HDLC и один порт Ethernet;
- 5 два интерфейса HDLC и четыре порта Ethernet;
- 7 два интерфейса HDLC, три порта Ethernet и один слот SFP.

р — Вариант питания:

- АС220 питание от сети переменного тока напряжением 220 В;
- <пусто> универсальное резервируемое питание: от сети переменного тока напряжением 187...242 В, 50 Гц или от сети постоянного тока напряжением 38...72 В.

Изделия содержат один, два, четыре или пять слотов для установки дополнительных модулей. Дополнительные модули МІМ и МІМЕ приведены в Табл. 2.

Табл. 2 — Полный список модулей

Модуль	Описание
MIM-E1A, MIM-2xE1A, MIM-4xE1A	Модули с одним, двумя и четырьмя портами G.703/E1 и поддержкой CRC-4. Чувствительность приёмника –43 дБ.
MIM-G703, MIME-2xG703	Модули с одним и двумя портами G.703/E1. Чувствительность приёмника –43 дБ.
MIME-2xG703L	Модули с одним и двумя портами G.703/E1. Чувствительность приёмника –12 дБ.
MIM-SHDSL, MIME-2xSHDSL	Модули с одним и двумя портами SHDSL. Скорость передачи данных по одной паре до 3 Мбит/с.

MIME-2xSHDSLQ	Модули с двумя портами SHDSL.bis. Скорость передачи данных по одной паре до 12672 кбит/с.					
MIM-UPI2, MIM-UPI3, MIME-2xUPI3	Модули с последовательными универсальными портами УПИ-2/УПИ-3.					
MIME-UPI3-G703L	Модуль с один последовательным универсальным портом УПИ-3 и одним портом G.703/E1. Чувствительность приёмника –12 дБ.					
MIME-2xE05-R	Модули с 2 портами ИКМ-15/G.703/E1 с функцией аварийной коммутации. Чувствительность приёмника –12 дБ.					
MIM-VLT32	Модуль сжатия голосовых данных потоков Е1/ИКМ-15.					
MIME-4xFXS	Модуль с 4 портами FXS.					
MIME-4xFXO	Модуль с 4 портами FXO/TЧ.					
MIME-2xFXS-2xFXO	Модуль с 2 портами FXS и 2 портами FXO/TЧ.					
MIME-4xRS232I	Модуль с 4 портами RS-232 с гальванической развязкой.					
MIME-4xRS485I	Модуль с 4 портами RS-485 с гальванической развязкой.					
MIME-PTT	Модули с одним и четырьмя портами для передачи голоса и сигнала					
MIME-4xPTT	Push To Talk.					

Табл. 3 — Полный список модификаций изделия ММ-221

Модификация	Описание
MM-221RC-UNI-AC9*	пластмассовый корпус, питание ~220 В
MM-221RC-UNI-DC60	пластмассовый корпус, питание =2072 В
MM-221RC-UNI-I-AC9*	для конструктива P-12, питание ~220 В
MM-221RC-UNI-I-DC60	для конструктива Р-12, питание =2072 В
MM-221RC-UNI-K-AC9	для конструктива P-510 (AC), питание ~9 В
MM-221RC-UNI-K-DC60	для конструктива P-510 (DC), питание =2072 В
MM-221RC-UNI**	металлический корпус 19", 1U, питание ~220 В
*	222222222 220 D/ 0 D

* — комплектуется сетевым адаптером ~220 В/~9 В ** — ранее MM-221RC-UNI-T

Табл. 4 — Полный список модификаций изделия ММ-222

Модификация	Описание
MM-222RC-UNI-AC9*	пластмассовый корпус, питание ~220 В
MM-222RC-UNI-DC60	пластмассовый корпус, питание =2072 В
MM-222RC-UNI-I-AC9*	для конструктива P-12, питание ~220 В
MM-222RC-UNI-I-DC60	для конструктива Р-12, питание =2072 В
MM-222RC-UNI-K-AC9	для конструктива Р-510 (AC), питание ~9 В
MM-222RC-UNI-K-DC60	для конструктива Р-510 (DC), питание =2072 В
MM-222RC-UNI**	металлический корпус 19", 1U, питание ~220 В
÷	000 D/ 0 D

комплектуется сетевым адаптером ~220 В/~9 В

** — ранее MM-222RC-UNI-T

Табл. 5 — Полный список модификаций изделия ММ-225

Модификация	Описание
MM-225RC-UNI-AC9*	пластмассовый корпус, питание ~220 В
MM-225RC-UNI-DC60	пластмассовый корпус, питание =2072 В
MM-225RC-UNI-I-AC9*	для конструктива Р-12, питание ~220 В
MM-225RC-UNI-I-DC60	для конструктива Р-12, питание =2072 В
MM-225RC-UNI-K-AC9	для конструктива Р-510 (AC), питание ~9 В
MM-225RC-UNI-K-DC60	для конструктива Р-510 (DC), питание =2072 В
MM-225RC-UNI**	металлический корпус 19", 1U, питание ~220 В

* — комплектуется сетевым адаптером ~220 В/~9 В

** — ранее MM-225RC-UNI-T

Табл. 6 — Полный список модификаций изделия ММ-227

Модификация	Описание
MM-227RC-UNI-AC9*	пластмассовый корпус, питание ~220 В
MM-227RC-UNI-DC60	пластмассовый корпус, питание =2072 В
MM-227RC-UNI-I-AC9*	для конструктива Р-12, питание ~220 В
MM-227RC-UNI-I-DC60	для конструктива Р-12, питание =2072 В
MM-227RC-UNI-K-AC9	для конструктива Р-510 (AC), питание ~9 В
MM-227RC-UNI-K-DC60	для конструктива Р-510 (DC), питание =2072 В
MM-227RC-UNI**	металлический корпус 19", 1U, питание ~220 В

* — комплектуется сетевым адаптером ~220 В/~9 В ** — ранее MM-227RC-UNI-T

Табл. 7 — Полный список модификаций изделия ММ-52х

Модификация	Описание
MM-522RC-UNI*	металлический корпус 19", 1U, питание ~220 В, =3872 В, универсальное
	резервируемое питание
MM-522RC-UNI-AC220	металлический корпус 19", 1U, питание ~220 В
MM-525RC-UNI*	металлический корпус 19", 1U, питание ~220 В, =3872 В, универсальное
	резервируемое питание
MM-525RC-UNI-AC220	металлический корпус 19", 1U, питание ~220 В
MM-527RC-UNI*	металлический корпус 19", 1U, питание ~220 В, =3872 В, универсальное
	резервируемое питание
MM-527RC-UNI-AC220	металлический корпус 19", 1U, питание ~220 В

* — ранее MM-52xRC-UNI-UPH

3.1 Совместимость изделий и модулей MIM/MIME

Табл. 8 — Совместимость изделий и модулей МІМ/МІМЕ

Тип модуля Модификация	MIM-E1A	MIM-2xE1A	MIM-4xE1A	MIM-G703	MIME-2×G703	MIME-2×G703L	MIM-SHDSL	MIME-2×SHDSL	MIME-2xSHDSLQ	MIM-UPI2	MIM-UPI3	MIME-2×UPI3	MIME-UPI3-G703L	MIME-2×E05-R	MIM-VLT32	MIME-4xFXS	MIME-4xFXO	MIME- 2xFXS-2xFXO	MIME-4xRS232I	MIME-4xRS485I	MIME-4xPTT	MIME-PTT
MM-221RC-UNI-AC9																						
MM-221RC-UNI-DC60																						
MM-221RC-UNI-I-AC9																						
MM-221RC-UNI-I-DC60																						
MM-221RC-UNI-K-AC9																						
MM-221RC-UNI-K-DC60																						
MM-221RC-UNI																						
MM-222RC-UNI-AC9																						
MM-222RC-UNI-DC60																						
MM-222RC-UNI-I-AC9																						
MM-222RC-UNI-I-DC60																						
MM-222RC-UNI-K-AC9																						
MM-222RC-UNI-K-DC60																						
MM-222RC-UNI																						
MM-225RC-UNI-AC9																						
MM-225RC-UNI-DC60																						
MM-225RC-UNI-I-AC9																						
MM-225RC-UNI-I-DC60																						
MM-225RC-UNI-K-AC9																						
MM-225RC-UNI-K-DC60																						
MM-225RC-UNI																						
MM-227RC-UNI-AC9																						
MM-227RC-UNI-DC60																						
MM-227RC-UNI-I-AC9																						
MM-227RC-UNI-I-DC60																						
MM-227RC-UNI-K-AC9																						
MM-227RC-UNI-K-DC60																						
MM-227RC-UNI																						
MM-522RC-UNI																						
MM-522RC-UNI-AC220																						
MM-525RC-UNI																						
MM-525RC-UNI-AC220																						
MM-527RC-UNI																						
MM-527RC-UNI-AC220																						

В Табл. 8 приведена информация о совместимости изделий MM-22x, MM-52x и модулей MIM/MIME. Символ «∎» означает совместимость изделия группы I или II и модуля. Символ «□» означает совместимость только изделия группы II и модуля.

4 Технические данные

4.1 Основные параметры

Табл. 9 — Основные параметры изделий

			Параметрь	1	
Модель	Количество слотов расширения	Количество интерфейсов HDLC	Количество портов Ethernet	Количество слотов SFP	Количество портов на кросс- коннекторе
MM-221	2	2	1	-	8
MM-222	2	4	1	-	8
MM-225	1	2	4	-	4
MM-227	1	2	3	1	4
MM-522	5	4	1	-	20
MM-525	4	2	4	-	16
MM-527	4	2	3	1	16

4.2 Функциональные возможности

Протоколы глобальных сетей (WAN):

- RAD HDLC;
- Cisco HDLC;
- PPP;
- MLPP.

Протоколы локальных сетей (LAN):

- Ethernet;
- VLAN 802.1Q.

Режим моста (bridge):

- Ethernet через RAD HDLC/PPP;
- поддерживаемые схемы работы: «точка-точка», «точка-многоточка», «цепочка», «кольцо».
- максимальный размер кадра Ethernet: 1600 байт;
- агрегация каналов (bond);
- STP, RSTP.

Маршрутизация:

- IP/Ethernet через Cisco HDLC/PPP;
- статическая маршрутизация;
- RIP;
- OSPF.

Сетевые службы и протоколы:

- NAT;
- DHCP-сервер;
- DHCP-клиент;
- NTP-клиент;
- ARP;
- ICMP;
- VRRP.

Безопасность:

- списки доступа (ACL);
- GRE (L2/L3-туннели);
- IPinIP.

Коммутатор Ethernet:

- два режима работы: с обработкой VLAN / без обработки VLAN;
- максимальный размер кадра Ethernet:
 - режим с обработкой VLAN 1518 байт;
 - режим без обработки VLAN 1916 байт.

- режимы работы портов: access, trunk;
- качество обслуживания (QoS):
 - количество очередей на каждом порту: 2;
 - типы очередей: WRR, Strict Priority;
 - классификация трафика на основе: приоритета порта, полей CoS и DSCP;
 - ограничения полосы пропускания с шагом 1 кбит/с.

Мультиплексирование и кросс-коммутация:

- мультиплексирование данных Ethernet, V.35 и E1;
- кросс-коммутация до 20 потоков E1;
- извлечение-вставка таймслотов;
- режим передачи до четырёх потоков E1 через V.35;
- резервируемая система синхронизации (резервные источники синхронизации);
- произвольная и неблокируемая матрица коммутации.

Мониторинг каналов связи:

- съём информации из полного потока Е1 или отдельных таймслотов;
- отсутствие влияния на канал передачи данных;
- возможность выдачи информации, снятой с нескольких каналов связи, в один канал;
- функция аварийной коммутации портов E1.

Резервирование каналов связи:

- резервирование каналов G.703, E1, SHDSL, V.35, Ethernet;
- схемы резервирования: 1 + 1, 1 + N;
- критерии переключения: LOS, LOF, AIS.

Инверсное мультиплексирование:

- объединение до 4 каналов для увеличения пропускной способности;
- объединение каналов различного типа (E1, V.35, SHDSL);
- пропускная способность до 8 Мбит/с;
- передача данных Ethernet, E1, V.35;
- возможность организовать четыре независимых инверсных мультиплексора в одном устройстве;
- компенсация задержки между линиями 3.8 мс;
- поддержка разных скоростей на линейных интерфейсах.

Система сжатия голоса:

- сжатие до 32 голосовых каналов из 2 входных каналов E1;
- сжатие голосовых данных в 10 раз;
- обнаружение голосовой активности (VAD);
- генерация комфортного шума (CNG);
- поддерживаемые типы сигнализации: ОКС №7, E-DSS1 (PRI), 2BCK, R1.5, DTMF и коды 2 из 6;
- обработка сигнализации 2ВСК;
- эхокомпенсация в соответствии с рекомендациями G.165 и G.168;
- компенсация эхо 64 мс;
- выключение сжатия в любом из каналов;
- выключение эхокомпенсации в любом из сжатых каналов;
- прозрачная передача факсов и модемов ТЧ;
- определение типа передаваемой информации: голос, факс и модем ТЧ.

Голосовой шлюз:

- импульсный или тональный набор номера;
- поддержка двух- и четырёхпроводного выделенного канала ТЧ в оконечном и транзитных режимах;
- регулировка уровней приёма и передачи с шагом 0,1 дБ;
- эхокомпенсация;
- режимы работы FXS-FXS, FXS-FXO, TЧ-TЧ, PTT-PTT;
- настройки режима автоматического установления соединения "hotline" для соединений FXS-FXS, FXS-FXO;
- установка метки VLAN и приоритетов 802.1p/DiffServ для каждого порта;
- регулировка времени пакетизации от 10 до 200 мс;
- адаптивно изменяемый и фиксированный размер джиттер-буфера;

- максимальный размер буфера: 500 мс;
- история соединений;
- детальная статистика каждого соединения;
- создание шаблонов номеров с возможностью преобразования номера для дальнейшей передачи;
- ограничение входящих соединений по типам (FXS/FXO) и категориям, назначенным на порты шлюза;
- трансляция сигнала управления режимом приёма-передачи радиостанции (РТТ).

Протоколы VoIP:

- SIP;
- RTP.

Голосовые кодеки:

- G.711 A-law;
- G.729a.

Протокол передачи факсов:

• Прозрачная передача факсов и модемов при использовании кодека G.711 A-law.

Передача данных асинхронных портов (RS-232/485):

- передача данных и сигналов RTS/CTS между двумя портами через синхронные последовательные интерфейсы (E1, UPI, SHDSL);
- передача данных и сигналов RTS/CTS между двумя ("точка точка") или несколькими ("точка - многоточка") портами в пакетном режиме через сетевые интерфейсы HDLC и Ethernet;
- преобразование данных из Ethernet в асинхронный поток с использованием стандартных протоколов UDP, TCP (сервер и клиент), Telnet (с расширением RFC 2217);
- работа в режиме консольного сервера;
- работа в режиме виртуального последовательного порта с использованием специального драйвера.

Диагностика:

- BER-тестер;
- ping, traceroute;
- статистика по портам и интерфейсам;
- возможность включения локальных и удалённых шлейфов;
- генератор тонального сигнала;
- эхо-тест;
- аварийная светодиодная индикация;
- режим передачи «шахматного кода» на асинхронных портах в четырёхпроводном режиме для проверки тестовой заглушкой и контроля уровня сигнала осциллографом;
- режимы активного и пассивного устройств для проверки двухпроводного RS-485.

Управление и мониторинг:

- SNMP (мониторинг);
- Syslog;
- SSH v2;
- Telnet-сервер;
- Telnet-клиент;
- управляющий порт Console;
- командная строка (CLI);
- управление через VLAN;
- TFTP и FTP;
- внеполосное управление в Sa-битах канала E1.

4.3 Параметры портов

4.3.1 Порт Ethernet

Порты Ethernet изделия выполнены в соответствии со спецификациями Ethernet 10Base-T/100Base-TX:

- скорость обмена данными 10/100 Мбит/с. Автоматическое определение скорости передачи;
- режим обмена дуплексный или полудуплексный. Автоматическое определение режима обмена;
- автоопределение типа кабеля MDI/MDI-X;
- Назначение контактов разъёма порта Ethernet приведено в Приложение 1.

4.3.2 Слот SFP

Слот для установки SFP модуля. Скорость обмена данными — 100мбит/с (Fast Ethernet).

4.3.3 Порт Console

Порт Console изделия выполняет функции устройства типа DTE и имеет цифровой интерфейс RS-232/V.24.

- скорость асинхронного обмена 9600 бит/с;
- количество битов данных 8;
- контроль по четности отсутствует;
- количество стоп-битов 1;
- управление потоком данных отсутствует.

Назначение контактов разъёма порта Console приведено в Приложение 2.

4.4 Внешний вид

4.4.1 Передняя панель

Вид передней панели изделий ММ-22х приведен на Рис. 17 — Рис. 20:

4 ,		
<i>Eelax</i>	STATE SLOT1 SLOT2	Speedway
· · · · · · · · · · · · · · · · · · ·		Сделано в России
		Утопленная кнопка

Рис. 17 — Вид передней панели изделий ММ-22х настольного исполнения

	elax		Speedway
+	+	STATE SLOT1 SLOT2	• * *

Утопленная кнопка

Рис. 18 — Вид передней панели изделий ММ-22х для установки в конструктив Р-12

D Speedway F	
STATE SLOT1 SLOT2	
	Утопленная кнопка
• elax	

Рис. 19 — Вид передней панели изделий ММ-22х для установки в конструктив Р-510

На передней панели изделий ММ-22х расположены:

- индикатор состояния изделия STATE;
- индикаторы состояния портов модулей в слотах 1 и 2;
- утопленная кнопка.

На передней панели изделий ММ-22х размещены три индикатора: STATE, SLOT1 и SLOT2. Назначение индикаторов, размещенных на передней панели изделий ММ-22х приведены в Табл. 10.

Индикатор	Наименование индикатора	Характер свечения индикатора и описание	
STATE	Состояние изделия	Зеленый — нормальное состояние	
		Тусклый красный — процесс загрузки программного	
		обеспечения	
		Красный — ошибка при загрузке программного обеспечения	
		или ошибка в работе изделия	
		Погашен — изделие выключено	
SLOT1	Состояние портов слота 1	Зеленый — все порты находится в нормальном рабочем состоянии	
		Зеленый мигающий - один из портов находится в режиме	
		тестирования, ошибок нет	
		Красный — ошибка на одном из портов	
		Красный мигающий - к одному из портов не подключена	
		линия или не установлено соединение на одном из голосовых	
		портов, на которых настроено постоянно активное	
		соединение в режиме выделенной линии	
		Нерегулярно мигает красным светом — момент вспышки	
		соответствует регистрации одиночной ошибки на порту	
		Погашен — модуль не установлен или все порты модуля	
		выключены	
SLOT2	Состояние портов	Зеленый — все порты находится в нормальном рабочем	
	слота 2	состоянии	
		Зеленый мигающии - один из портов находится в режиме	
		тестирования, оширок нет	
		красныи — ошиока на одном из портов	
		красный мигающий - к одному из портов не подключена	
		линия или не установлено соединение на одном из голосовых	
		портов, на которых настроено постоянно активное	
		Соединение в режиме выделенной линии	
		перегулярно мигает красным светом — момент вспышки	
		Соответствует регистрации одиночной ошиоки на порту	
		поташен — модуль не установлен или все порты модуля выключены	

	4.0	~			
Та́п	10	Описаниа	инликато	полной	панопи
raon.	10	Onvicantic	индикато	редней	manchill

Вид передней панели изделий ММ-52х приведен на Рис. 21 - Рис. 23:

Рис. 21 — Вид передней панели изделий MM-522RC-UNI

На передней панели изделий MM-522RC-UNI расположены:

- индикатор состояния изделия и его портов STATE;
- индикатор состояния напряжения питания изделия PWR;
- разъём порта Ethernet;
- разъём порта Console;
- пять слотов для установки модулей расширения;
- **УТОПЛЕННАЯ КНОПКА.**

Рис. 23 — Вид передней панели изделий MM-527RC-UNI

На передней панели изделий ММ-525 и ММ-527 расположены:

- индикатор состояния изделия и его портов STATE;
- индикатор состояния напряжения питания изделия PWR;
- разъёмы портов Fast Ethernet и слота SFP (только в MM-527);
- разъём порта Console;
- четыре слота для установки модулей расширения;
- утопленная кнопка.

На передней панели изделий MM-52х размещены два индикатора: STATE и PWR. Назначение индикаторов, размещенных на передней панели изделия MM-52х приведены в Табл. 11.

Табл. 11 — Описание индикаторов передней панели

Индикатор	Наименование	Характер свечения индикатора. Комментарий
	индикатора	
STATE	Состояние изделия и	Зеленый — нормальное состояние изделия и всех его
	его портов	портов
		Тусклый красный — процесс загрузки программного
		обеспечения
		Красный — ошибка при загрузке программного
		обеспечения, ошибка в работе изделия или одного из его
		портов
		Зеленый мигающий — один из портов находится в
		режиме тестирования, ошибок нет
		Красный мигающий — к одному из портов не
		подключена линия или не установлено соединение на
		одном из голосовых портов, на которых настроено
		постоянно активное соединение в режиме выделенной
		линии
		Нерегулярно мигает красным светом — момент
		вспышки соответствует регистрации одиночной ошибки в
		порту Погашен — изделие выключено
PWR	Состояние напряжения	Зеленый — на все разъёмы изделия подано
	питания изделия	напряжение питания
		Погашен — на один или оба разъёма не подано
		напряжение питания

4.4.2 Задняя панель

Вид задней панели изделий ММ-221 и ММ-222 приведен на Рис. 24 - Рис. 28:

Рис. 24 — Вид задней панели изделий MM-221RC-UNI-AC9 и MM-222RC-UNI-AC9 настольного исполнения с питанием от сети переменного тока

Рис. 25 — Вид задней панели изделий MM-221RC-UNI-DC60 и MM-222RC-UNI-DC60 настольного исполнения с питанием от сети постоянного тока

Рис. 26 — Вид задней панели изделий MM-221RC-UNI-I-AC9 и MM-222RC-UNI-I-AC9 для установки в конструктивы P-12 и P-510 с питанием от сети переменного тока

Рис. 27 — Вид задней панели изделий MM-221RC-UNI-I-DC60 и MM-222RC-UNI-I-DC60 для установки в конструктивы P-12 и P-510 с питанием от сети постоянного тока

Рис. 28 — Вид задней панели изделий MM-221RC-UNI и MM-222RC-UNI в металлическом корпусе 19"

На задней панели изделий ММ-221 и ММ-222 расположены:

- разъём порта Ethernet;
- разъём порта Console;
- два слота для установки модулей расширения;
- разъём для подключения кабеля питания;
- кнопка выключения питания (только в модификациях без индекса питания);
- разъём для установки предохранителя;
- клемма заземления (только в модификациях с DC-питанием и в модификациях без индекса питания).

Вид задней панели изделий ММ-225 и ММ-227 приведен на Рис. 29 - Рис. 38:

Рис. 29 — Вид задней панели изделий MM-225RC-UNI-AC9 настольного исполнения

Рис. 30 — Вид задней панели изделий MM-227RC-UNI-AC9 настольного исполнения

Рис. 31 — Вид задней панели изделий MM-225RC-UNI-DC60 настольного исполнения с питанием от сети постоянного тока

Рис. 32 — Вид задней панели изделий MM-227RC-UNI-DC60 настольного исполнения с питанием от сети постоянного тока

Рис. 33 — Вид задней панели изделий MM-225RC-UNI-I-AC9 для установки в конструктивы Р-12 и Р-510 с питанием от сети переменного тока

Рис. 34 — Вид задней панели изделий MM-227RC-UNI-I-AC9 для установки в конструктивы Р-12 и Р-510 с питанием от сети переменного тока

Рис. 35 — Вид задней панели изделий MM-225RC-UNI-I-DC60 для установки в конструктивы Р-12 и Р-510 с питанием от сети постоянного тока

Рис. 36 — Вид задней панели изделий MM-227RC-UNI-I-DC60 для установки в конструктивы Р-12 и Р-510 с питанием от сети постоянного тока

Рис. 37 — Вид задней панели изделий MM-225RC-UNI в металлическом корпусе 19"

контакт для заземления

Рис. 38 — Вид задней панели изделий MM-227RC-UNI в металлическом корпусе 19"

На задней панели изделий MM-225 и MM-227 расположены:

- разъёмы портов Fast Ethernet и слота SFP (только в MM-227);
- разъём порта Console;
- один слот для установки модуля расширения;
- разъём для подключения кабеля питания;
- кнопка выключения питания (только в модификациях без индекса питания);
- разъём для установки предохранителя;
- клемма заземления (только в модификациях с DC-питанием и модификациях без индекса питания).

Вид задней панели изделий ММ-52х приведен на Рис. 39:

	кабеля питания
era 3672 V	
Ď	
	Контакт для подключения

Рис. 39 — Вид задней панели изделия ММ-52х

На задней панели изделий ММ-52х расположены:

- разъём для подключения кабеля питания AC 220 B;
- разъём для подключения кабеля питания DC 38...72 В (только в модификации без индекса питания);
- клемма заземления.

Разъем лля полключения

Над разъемом порта Ethernet изделий ММ-221, ММ-222 и ММ-522 расположены индикаторы его состояния. Назначение индикаторов порта Ethernet приведены в Табл. 12.

Индикатор	Наименование	Характер свечения индикатора. Комментарий
	Целостность физического	Светится постоянно — соединение установлено
LNK/ACT	соединения/Передача	Мигает — приём/передача данных
	данных	Погашен — соединение не установлено
		Светится постоянно — скорость соединения равна
SPEED	Скорость соединения	100 Мбит/с
		Погашен — скорость соединения равна 10 Мбит/с
		Светится постоянно — режим обмена данными
FDX/COL	Режима обмена данными/Обнаружение коллизий	полный дуплекс
		Погашен — режим обмена данными полудуплекс,
		вспышки индикатора происходят в моменты фиксаций
		коллизий (коллизия — попытка одновременной
		передачи данных изделием и какой-либо станцией
		сети Ethernet)

Над разъемом портов FastEthernet и слотом SFP изделий MM-225, MM-227, MM-525 и MM-527 расположены индикаторы их состояния. Назначение индикаторов портов FastEthernet приведены в Табл. 13.

Табл. 13 —	- Назначение индикатој	ров портов FastEthernet
------------	------------------------	-------------------------

Индикатор	Наименование	Комментарий	
LNK/100	Целостность физического соединения/ Скорость соединения	Светится постоянно зеленым светом — скорость соединения равна 10 Мбит/с Светится постоянно оранжевым светом — скорост соединения равна 100 Мбит/с Мигает — приём/передача данных Погашен — соединение не установлено	
FDX	Режима обмена данными	Светится постоянно зеленым светом — режим обмена данными полный дуплекс Погашен — режим обмена данными полудуплекс	
LNK/ACT (SFP-слот)	Целостность физического соединения/ Передача данных	Светится постоянно — соединение установлено Мигает — приём/передача данных Погашен — соединение не установлено	

4.5 Конструктивное исполнение и электропитание

Табл. 14 — Варианты конструктивного исполнения и электропитания ММ-22х

Модификация	Конструктивное исполнение	Напряжение электропитания	Мощность, не более*
MM-22x-AC9	Пластмассовый корпус 226x166x45 мм	~9 В, комплектуется сетевым адаптером ~220/9 В	13,5 Вт
MM-22x-DC60	Пластмассовый корпус 226х166х45 мм	=2072 B	
MM-22x-I-AC9	Для монтажа в корзину Р-12	~9 В, комплектуется сетевым адаптером ~220/9 В	
MM-22x-I-DC60	Для монтажа в корзину Р-12	=2072 B	
MM-22x-K-AC9	Для монтажа в корзину Р-510	~9 B	
MM-22x-K-DC60	Для монтажа в корзину Р-510	=2072 B	
MM-22x	Металлический корпус высотой 1U для монтажа в стойку 19"	~187242 B	

* — зависит от установленных модулей расширения

х — модификации 221RC, 222RC, 225RC и 227RC

Табл. 15 — Варианты конструктивного исполнения и электропитания ММ-52х

Модификация	Конструктивное исполнение	Напряжение электропитания	Мощность, не более*
MM-52xRC-UNI	Металлический корпус высотой 1U для монтажа в стойку 19"	~187242 B, =3872 B	60 Вт
MM-52xRC-UNI-AC220	Металлический корпус высотой 1U для монтажа в стойку 19"	~88264 B	60 BT

— зависит от установленных модулей расширения

Табл. 16 — Тип соединителей разъёмов питания

Модификация	Описание	
MM-22x-AC9		
MM-22x-I-AC9	Разъём под штекер d=2.1 мм DJK-02A	
MM-22x-K-AC9		
MM-22x-DC60		
MM-22x-I-DC60	Вилка для клеммника трёхконтактная, шаг 5.0 мм	
MM-22x-K-DC60		
MM-22x	Разъём питания ~220 В АС-1	
	Разъём питания ~220 В АС-1 и вилка для	
	клеммника двухконтактная, шаг 5.0 мм	
MM-52x-UNI-AC220	Разъём питания ~220 В АС-1	

х — модификации 221RC, 222RC, 225RC, 522RC, 525RC и 527RC

4.5.1 Особенности электропитания модификации MM-52x-UNI

В изделии MM-52xRC-UNI предусмотрено электропитание от двух альтернативных источников:

- от сети переменного тока напряжением 187...242 В, 50 Гц;
- от сети постоянного тока напряжением 38...72 В.

Рекомендуется задействовать оба источника одновременно. Фактически изделие будет получать питание только от одного источника, который был включён первым. Второй источник остаётся в режиме «горячего резерва», т. е. в постоянной готовности принять на себя энергоснабжение изделия в случае отключения первого источника. Таким образом, при пропадании напряжения в сети переменного или постоянного тока изделие остаётся работоспособным. Автоматическое переключение на резервный источник питания осуществляется плавно, без нарушения работоспособности изделия.

Если задействованы оба источника одновременно, то индикатор PWR (Power) светится зелёным светом. Если один из источников не подключён к изделию, то этот индикатор погашен.

4.6 Габаритные размеры и масса

Модификация	Габаритные размеры (ШхГхВ)	Macca**
MM-22x-AC9*	226 х 166 х 45 мм	не более 1,2 кг
MM-22x-DC60		
MM-22x-I-AC9*	215 х 160 х 40 мм	не более 1,0 кг
MM-22x-I-DC60		
MM-22x-K-AC9	226 х 165 х 35 мм	не более 1,0 кг
MM-22x-K-DC60		
MM-22x	441 х 170 х 44 мм	не более 2,7 кг
MM-52x-AC220	437 х 284 х 43 мм	не более 5 кг
MM-52x		

Табл. 17 — Габаритные размеры корпуса и масса изделия

х — модификации 221RC, 222RC, 225RC, 227RC, 522RC, 525RC, 527RC

* — включая массу сетевого адаптера

** — в зависимости от установленных модулей

4.7 Условия эксплуатации

Условия эксплуатации изделий:

- температура окружающей среды от +5 до +40 °C;
- относительная влажность воздуха до 95 % при температуре 30 °C без образования конденсата;
- режим работы круглосуточный;
- наработка на отказ 40000 часов.

Изделия имеют полную гальваническую развязку с портами Ethernet и сетью питания (в исполнениях, предусматривающих использование сетевого адаптера).

5 Комплект поставки

В базовый комплект поставки изделия входят:

- изделие выбранного исполнения (п. 3);
- сетевой адаптер (блок питания) только для изделий ММ-22х в пластмассовом корпусе и для конструктива P-12 с питанием ~220 В;
- сетевой кабель питания только для изделий в металлический корпус с питанием от сети переменного тока;
- клемма для подключения кабеля питания только для изделий с питанием от сети постоянного тока;
- переходник А-006 (см. Приложение 3);
- кабель А-010 (см. Приложение 4);
- компакт-диск с документацией;
- упаковочная коробка.

Изделие любого исполнения может быть по отдельному заказу дополнительно укомплектовано модулями расширения (Табл. 2).

6 Установка и подключение

Установка изделия должна производиться в сухом отапливаемом помещении. Перед установкой необходимо произвести внешний осмотр изделия с целью выявления механических повреждений корпуса и соединительных элементов.

Перед подключением изделия следует внимательно изучить настоящее руководство.

Если изделие хранилось при температуре ниже +5 °C, перед первым включением его необходимо выдержать при комнатной температуре не менее двух часов.

6.1 Установка

В зависимости от модификации установите изделие в 19-дюймовую стойку, конструктив Р-510 или на ровную поверхность (например, стол).

6.2 Подключение

Последовательность подключения:

- для модификаций MM-22xRC-UNI-AC9, MM-22xRC-UNI-I-AC9:
 - вставьте штекер сетевого адаптера (входящего в комплект поставки) в разъём питания, расположенный на панели изделия, а вилку блока питания сетевого адаптера
 в розетку электросети. Напряжение питания должно соответствовать требованиям, указанным в Табл. 14.
- для модификации MM-22xRC-UNI-K-AC9:
 - вставьте штекер от распределённого жгута электропитания конструктива P-510-AC в разъём питания, расположенный на панели изделия;
 - подайте напряжение питания на блок питания конструктива P-510-AC. При использовании конструктива P-510-AC, допускается подключение изделий без предварительного отключения блока питания конструктива от электросети ~ 220 В.
- для модификаций MM-22xRC-UNI-DC60, MM-22xRC-UNI-I-DC60:
 - подключите контакт заземления расположенный на клеммной колодке (см. Приложение 6) к внешнему защитному заземлению;
 - перед началом подключения источника питания к клеммной колодке изделия (входящей в комплект поставки) убедитесь, что источник питания постоянного тока, к которому планируется выполнять подключение изделия, выключен;
 - подключите источник постоянного тока к клеммной колодке изделия (см. Приложение 6), полярность неважна, после чего вставьте клеммную колодку в разъем изделия;
 - подайте напряжение питания на изделие. Напряжение питания должно соответствовать требованиям, указанным в Табл. 14.
- для модификации **MM-22xRC-UNI-K-AC9**:
 - вставьте клеммную колодку от распределённого жгута электропитания P-510-DC в разъём питания, расположенный на панели изделия;
 - подайте напряжение питания на клеммную колодку конструктива P-510-DC. Напряжение питания должно соответствовать требованиям, указанным в Табл. 14. При использовании конструктива P-510-DC, допускается подключение изделий без предварительного отключения конструктива от электросети постоянного тока, но при этом внешний источник питания должен быть устойчивым к скачкообразным изменениям тока нагрузки.
- для модификации **MM-22xRC-UNI**:
 - убедитесь, что переключатель питания находится в выключенном положении (0);
 - подключите клемму заземления изделия к внешнему защитному заземлению;
 - вставьте розетку кабеля питания (входящего в комплект поставки) в разъём на панели изделия, а вилку на другом конце кабеля питания в розетку электросети. Напряжение питания должно соответствовать требованиям, указанным в Табл. 14.
 - переведите переключатель питания во включенное положение (1).

- для модификации MM-52xRC-UNI-AC220:
 - подключите клемму заземления изделия к внешнему защитному заземлению;
 - вставьте розетку кабеля питания (входящего в комплект поставки) в разъём на панели изделия, а вилку на другом конце кабеля питания — в розетку электросети. Напряжение питания должно соответствовать требованиям, указанным в Табл. 15.
 - убедитесь в том, что индикатор PWR на передней панели изделия светится зелёным светом.
- для модификации **MM-52xRC-UNI**:
 - подключите клемму заземления изделия к внешнему защитному заземлению;
 - для электропитания от сети переменного тока:
 - вставьте розетку кабеля питания (входящего в комплект поставки) в разъём на панели изделия, а вилку на другом конце кабеля питания — в розетку электросети. Напряжение питания должно соответствовать требованиям, указанным в Табл. 15.
 - для электропитания от сети постоянного тока:
 - перед началом подключения источника питания к клеммной колодке изделия (входящей в комплект поставки) убедитесь, что источник питания постоянного тока, к которому планируется выполнять подключение изделия, выключен;
 - подключите источник постоянного тока к клеммной колодке изделия (см. Приложение 5) соблюдая полярность, после чего вставьте клеммную колодку в разъем изделия;
 - подайте напряжение питания на изделие. Напряжение питания должно соответствовать требованиям, указанным в Табл. 15. Если задействованы оба источника питания одновременно, то индикатор PWR светится зелёным светом. Если один из источников питания не подключён, то индикатор PWR — погашен.
- после подачи питания, изделие выполняет процедуру самотестирования и начальной загрузки.

7 Управление

7.1 Способы управления изделием

Возможны два способа управления:

- локальное, с использованием терминальной программы через порт Console;
- удалённое, с использованием протоколов Telnet и SSH через порт Ethernet или любой порт модуля расширения.

7.1.1 Локальное управление через порт Console

Управление изделием осуществляется через порт Console, к которому подключается устройство типа DTE или DCE, выполняющее функцию терминала (далее для краткости это устройство именуется терминалом). Подключение терминала к порту Console изделия производится с помощью кабеля A-010 и переходника A-006.

Порт терминала должен быть настроен следующим образом:

- асинхронная скорость передачи данных должна быть равна 9600 бит/с;
- число битов данных 8;
- контроль по четности или нечётности отсутствует;
- число стоп-битов 1;
- управление потоком данных отсутствует.

Вход в систему меню осуществляется нажатием на терминале клавиши Enter.

7.1.2 Удалённое управление по протоколу Telnet

Изделием можно управлять с удаленного компьютера через порт Ethernet или любой порт модуля расширения с использованием протокола Telnet.

Для управления изделием по протоколу Telnet может использоваться программа PuTTY или аналогичная терминальная программа.

Для удалённого управления по протоколу Telnet необходимо предварительно выполнить конфигурацию устройства (например, настроить интерфейсы, задать IP-адрес и маску сети, шлюз по умолчанию). По умолчанию протокол Telnet включён.

7.1.3 Удалённое управление по протоколу SSH

Изделием можно управлять с удаленного компьютера через порт Ethernet или любой порт модуля расширения с использованием протокола SSH.

Для управления изделием по протоколу SSH может использоваться программа PuTTY или аналогичная терминальная программа.

Для удалённого управления по протоколу SSH необходимо предварительно выполнить конфигурацию устройства (например, настроить интерфейсы, задать IP-адрес и маску сети, шлюз по умолчанию) и включить протокол SSH.

Для включения протокола SSH необходимо с помощью встроенного редактора nano открыть файл netlogin.sh:

```
router#nano netlogin.sh
```

Ввести команду активации службы SSH:

dropbear -R -I 60

Для сохранения файла необходимо нажать комбинацию клавиш Ctrl+X, затем Y и Enter. Для того, чтобы команда применилась, необходимо перезагрузить устройство с помощью команды **reboot**.

7.2 Программное обеспечение и файловая система

Устройство работает под управлением встроенного программного обеспечения на основе операционной системы Linux. Программное обеспечение размещается во флэш-памяти, которая организована в файловую систему. Структура файлов и директорий необходимых для работы устройства выглядит следующим образом:

bin dev etc/ config home/ admin user lib linuxrc mnt proc sbin sys tmp ulmage usr var/ log

Эта структура директорий и файлов создается при инициализации флэш-памяти устройства и не должна изменяться. Назначение и описание директорий и файлов необходимых и доступных пользователю:

Название	Название	Описание
директории	файла	
home/admin/		Домашняя директория пользователя admin
home/user/		Домашняя директория пользователя user
tmp/		Временная директория. Содержимое директории стирается при
		перезагрузке устройства
etc/config/		Директория по умолчанию
etc/config/	muxd.conf	Загрузочная конфигурация процесса muxd, отвечающего за работу
_		контроллеров и кросс-коннектора
etc/config/	netconfig.sh	Загрузочная конфигурация, в которой хранятся сетевые и системные
		параметры устройства
etc/config/	syslog.conf	Параметры логирования системных сообщений
etc/config/	resolv.conf	Список DNS-серверов
etc/config/	udhcpd.conf	Конфигурация DHCP-сервера
etc/config/	udhcpd.leases	Список выданных DHCP-сервером IP-адресов
etc/config/	ospfd.conf	Конфигурация протокола OSPF
etc/config/	ripd.conf	Конфигурация протокола RIP
etc/config/	zebra.conf	Конфигурация параметров, используемых протоколами маршрутизации
etc/config/	keepalived.conf	Конфигурация протокола VRRP
var/log/	messages	Журнал системных сообщений

Табл. 18 — Описание директорий

7.3 Интерфейс пользователя и режимы работы

Интерфейс пользователя основан на использовании интерфейса командной строки (CLI). Пользователь вводит команду в виде последовательности символов в командной строке, расположенной в нижней части экрана терминала. Результаты выполнения команды выводятся в оставшуюся часть экрана, при этом текст сообщений сдвигается снизу (от командной строки) вверх по мере его поступления.

Интерфейс пользователя разделён на три режима:

Табл. 19 — Описание режимов

Название режима	Описание	Назначение
Linux shell	Командная оболочка OC Linux	Настройка сетевых и системных параметров устройства
mux shell	Командная оболочка процесса muxd	Настройка параметров контроллеров и кросс-коннектора
vty shell	Командная оболочка Процесса quagga	Настройка параметров, используемых протоколами маршрутизации

На Рис. 40 представлена структура интерфейса пользователя и команды необходимые для перехода между режимами.

Рис. 40 — Структура интерфейса пользователя и команды необходимые для перехода между режимами

Префикс router, выводимый перед названием режима конфигурирования, представляет собой имя устройства. Это имя может быть изменено командой **hostname**.

При подключении к устройству через порт Console или по протоколу Telnet пользователь попадает в режим Linux shell, предварительно пройдя авторизацию по имени и паролю. Режим mux shell имеет трёхуровневую структуру. Каждый из уровней имеет определённый вид командной строки и название:

Вид командной строки	Название и описание	Команда для входа в режим	Команда для выхода из режима
router (shell)#	Привилегированный режим.	shell	exit или end
	Команды мониторинга и диагностики.		
router (shell-config)#	Режим глобальной конфигурации.	configure terminal	exit или end
	Настройка параметров кросс- коннектора.		
router (shell-config-ctrl)#	Режим конфигурирования контроллера.	controller {тип} {номер}	exit или end
	Настройка параметров контроллеров		
router (shell-config-if)#	Режим конфигурирования интерфейса.	interface HDLC {номер}	exit или end
	Настройка физических параметров интерфейса HDLC		

Режим vty shell имеет четырехуровневую структуру. Каждый из уровней имеет определённый вид командной строки и название:

Табл. 21 — Структура	режима vty shell
----------------------	------------------

Вид командной строки	Название и описание	Команда для входа в режим	Команда для выхода из режима
router >	Пользовательский режим.	vtysh	exit или end
	Команды мониторинга.		
router #	Привилегированный режим.	enable	exit или end
	Мониторинга и настройка системных параметров, используемых протоколами маршрутизации.		
router (config)#	Режим глобальной	configure terminal	exit или end
	конфигурации.		
	Настройка параметров,		
	используемых протоколами		
	маршрутизации.		
router (config-routerl)#	Режим конфигурирования	controller {тип} {номер}	exit или end
	протокола маршрутизации.		
	Настройка параметров		
	протоколов маршрутизации		
router (config-if)#	Режим конфигурирования	interface {тип} {номер}	exit или end
	интерфеиса.		
	Настройка параметров		
	интерфейсов		

Для разграничения прав доступа к командам управления существуют два типа пользователей:

- обычный пользователь (user) разрешён доступ к командам мониторинга и диагностики;
- привилегированный пользователь (admin) разрешён доступ к командам мониторинга, изменения конфигурации и обновления программного обеспечения.

Для защиты от несанкционированного доступа предусмотрена идентификация по имени пользователя и паролю. Устройство поддерживает идентификацию двух различных пользователей. Их имена, типы и пароли по умолчанию приведены ниже.

Табл. 22 — Список пользователей и их характеристики

Имя пользователя	Тип	Пароль по умолчанию
admin	привилегированный	admin
user	обычный	user

8 Быстрая настройка

В устройство заложена возможность применить заранее подготовленные конфигурации для наиболее часто используемых схем. Установка таких конфигураций производится с помощью команды preset-config.

Рекомендуемая последовательность действий:

- 1. Установите выбранные Вами модули в слоты устройства;
- 2. Соберите прототип Вашей системы передачи данных, расположив "на столе" устройства для конфигурирования, проверки и прогона пробных потоков данных;
- 3. Подключите COM-порт компьютера к порту Console устройства с помощью кабеля и переходника, которые входят в комплект поставки;
- 4. Запустите программу PuTTY или аналогичную другую терминальную программу;
- 5. Введите регистрационные данные имя пользователя admin и пароль (пароль по умолчанию admin);
- 6. Введите команду preset-config I для отображения доступных конфигураций;
- 7. Введите команду **preset-config –s** <N> для установки одной из конфигураций, отображенных на шаге 6. N номер требуемой Вам конфигурации;
- 8. После проверки соответствия установленных модулей и выбранной конфигурации производится установка выбранной конфигурации в качестве загрузочной;

Внимание! Установленная конфигурация может отличаться от конфигурации, которая необходима для решения Вашей задачи. После установки конфигурации в устройство в окне терминала может быть выведено сообщение о том, какие параметры установленной конфигурации необходимо изменить в соответствии с Вашей схемой. К таким параметрам могут относиться, например, IP-адреса и сетевые маски, режим синхронизации, номера используемых таймслотов и т.п.

- Если необходимо, то внесите изменения в конфигурацию устройства (файлы muxd.conf и netconfig.sh). Для редактирования файлов необходимо использовать текстовый редактор nano, который запускается из Linux shell командой **nano**.
- 10. Перезагрузите устройство.

Подробное описание команды **preset-config** приведено в справочнике команд.

9 Сохранение и загрузка конфигурации

9.1 Сохранение конфигурации

Во избежание потери рабочей конфигурации, связанной с перезагрузкой или отключением питания, необходимо выполнить сохранение настроек устройства.

Процесс сохранения конфигурации состоит из двух этапов. Первый этап — сохранение конфигурации контроллеров и кросс-коннектора, второй — сохранение сетевых параметров и общесистемных настроек устройства.

Сохранение конфигурации контроллеров и кросс-коннектора:

- 1. Перейдите в режим конфигурирования контроллеров и кросс-коннектора командой shell;
 - 2. Выполните команду copy running-config startup-config.

или

выполните команду @ copy running-config startup-config из Linux shell.

Сохранение сетевых параметров и общесистемных настроек:

Данные настройки хранятся в соответствующих файлах, расположенных в директории /etc/config:

- 1. Внесите в файл netconfig.sh настройки сетевых параметров;
- 2. Внесите в файл syslog.conf настройки системы протоколирования событий по протоколу Syslog.

Для правки файлов используйте встроенный тестовый редактор nano, для запуска которого необходимо выполнить команду **nano**.

Пример перехода в файл netconfig.sh с помощью редактора nano:

router#nano netconfi	g.sh	

3. Для сохранения файла нажмите комбинацию клавиш Ctrl+X, затем Y и Enter. Для того, чтобы команда применилась, перезагрузите устройство с помощью команды **reboot**.

9.2 Сохранение конфигурации на сервере

Процедура сохранения конфигурации заключается в копировании файла с настройками из энергонезависимой памяти (Flash-память) изделия на сервер. При этом используется один из протоколов FTP (File Transfer Protocol) или TFTP (Trivial File Transfer Protocol).

Для сохранения файла с настройками выполните следующие действия:

- 1. Включите сервер FTP/TFTP;
- 2. Подключите порт Ethernet изделия к сети. Примеры подключения показаны на Рис. 41.

Рис. 41 — Примеры подключения изделия для сохранения и загрузки конфигурации или обновления программного обеспечения

- 4. Настройте параметры порта изделия (IP-адрес, маску сети и т. п.) для доступа к сети, для чего используйте команду **ifconfig**;
- 5. Создайте файл, содержащий все настройки устройства командой preset-config –b (поумолчанию, настройки сохраняются в файл /home/<username>/backup-config.tar.gz);
- 6. Скопируйте файл с настройками на сервер FTP/TFTP, используя команды ftp либо tftp.

Пример использования команды TFTP:

```
router#tftp -l /home/admin/backup-config.tar.gz -r backup-config.tar.gz -p
192.168.0.111
```

9.3 Загрузка конфигурации с сервера

Процедура загрузки конфигурации заключается в копировании файла с настройками с сервера в энергонезависимую память (Flash-память) изделия. При этом используется один из протоколов FTP (File Transfer Protocol) или TFTP (Trivial File Transfer Protocol).

Для загрузки файла с настройками выполните следующие действия:

- 1. Включите сервер FTP/TFTP;
- 2. Подключите один из портов устройства к сети. Примеры подключения показаны на Рис. 41;
- 3. Настройте параметры порта изделия (IP-адрес, маску сети и т. п.) для доступа к сети, для чего используйте команду **ifconfig**;
- 4. Скопируйте файл с настройками с сервера FTP/TFTP, используя команды ftp либо tftp.

Пример использования команды TFTP:

```
router#tftp -r backup-config.tar.gz -l /home/admin/backup-config.tar.gz -g
192.168.0.111
```

9.4 Восстановление заводских настроек

Вариант 1

Для загрузки изделия с заводскими настройками (игнорирования загрузочной конфигурации) во время процедуры загрузки программного обеспечения изделия необходимо при появлении в окне терминальной программы надписи:

Press	's'	to skip startup config:		
нажать клавишу "S". После этого в окне терминальной программы появиться сообщение:				
Press	'S'	to skip startup config: OK !		

означающее, что загрузочная конфигурация проигнорирована и изделие загрузится с заводскими настройками.

Вариант 2

Для восстановления заводских настроек изделия, включая пароль учетной записи admin, необходимо воспользоваться командой **preset-config** с ключом –d:

```
router#preset-config -d
Current configuration is not default
Do you want to backup current configuration (y/n)? n
Default configuration will be applied after reboot
```

10 Обновление программного обеспечения

10.1 Определение аппаратной версии ММ-22х и ММ-52х

Устройства ММ-22х и ММ-52х по техническим параметрам принадлежат к двум группам: I и II. При обновлении необходимо использовать ПО, соответствующее аппаратной версии.

10.1.1 Определение аппаратной версии устройства с использованием интерфейса командной строки

С помощью терминальной программы выполните в режиме Linux shell (router#) команду version. В результате выполнения команды на экран терминала выводится сообщение вида:

```
Software package version 1.19.0.7
Built at Thu Mar 21 15:22:33 MSK 2013
U-Boot version: U-Boot 1.2.0-zelax-1.6-svn3027M (Dec 14 2010 - 18:35:16)
Shell version 1.23.1 build 5059
Hardware control daemon (muxd) version 1.23.1 build 5059 (MM-200 family)
Firmware version 2.17
Bridge control utility version 1.2-zelax-1.1
Linux kernel version 2.6.26.8-svn5080
```

Hardware: MM-222RC-UNI-AC9

Строка вида «Hardware: MM-22xRC-UNI-…» или «Hardware: MM-52xRC-UNI-…» обозначает принадлежность устройства к группе I.

Строка вида «Hardware: MM-22xRC-UNI2-...», «Hardware: MM-52xRC-UNI2-...», «Hardware: MM-22xRC-UNI3-...» или «Hardware: MM-52xRC-UNI3-...» обозначает принадлежность устройства к группе II.

10.1.2 Определение аппаратной версии устройства по серийному номеру

Для определения аппаратной версии устройства пришлите его серийный номер на адрес электронной почты отдела технической поддержки Zelax (<u>tech@zelax.ru).</u>

Серийный номер присутствует на наклейке на задней панели устройства, а также может быть определен с помощью интерфейса командной строки (команда version):

```
router#version
_____
Software package version 1.25.6.8 ospf
Built at Tue, 20 Mar 2018 18:08:02 +0300
U-Boot version: U-Boot 1.3.2-zelax-4.17-svn8050 (Jan 26 2018 - 14:17:44) MPC83XX
Shell version 1.35.17 build 8128
Hardware control daemon (muxd) version 1.35.17 build 8128 (MM-22x family)
Firmware version 3.4
Bridge control utility version 1.2-zelax-1.1
Linux kernel version 2.6.26.8-svn8120
Hardware: MM-227RC-UNI2-AC9
CPU board: DMIME-RSE121TFX-2
333 MHz system clock, 128 MB DRAM, 128 MB Flash
2 Serial (HDLC) interfaces
3 FastEthernet interfaces
1 Optical Ethernet interface
Base board: MUX3-240
Device MAC address: 00:1A:81:00:85:6C
Device serial number: 2317123456789
```

10.2 Загрузка новой версии программного обеспечения

Процедура обновления описана для устройств групп I и II версии ПО 1.11.2.3 и выше. Если в устройстве группы I установлена более ранняя версия, то необходимо обновить ПО минимум до версии 1.11.2.3 согласно п.10.3.

Процедура загрузки новой версии программного обеспечения заключается в копировании файла с сервера в память изделия с помощью протокола TFTP или FTP.

Для загрузки программного обеспечения выполните следующие действия:

- 1. Загрузите файл с новой версией ПО (*.img для устройств группы I, *.pkg для устройств группы II) с сайта <u>www.zelax.ru</u>;
- Включите сервер TFTP/FTP. Скопируйте файл новой версией ПО в базовую директорию сервера;
- 3. Подключите устройство к сети. Примеры подключения показаны на Рис. 41;
- 4. Настройте параметры порта изделия (IP-адрес, маску сети и т.д.) для доступа к сети, используя команду ifconfig;
- 5. Загрузите файл с новой версией ПО с помощью команды **tftp** или **ftpget** в директорию /tmp с сервера с указанием следующих параметров:
 - имя и местоположение файла в память изделия;
 - имя копируемого файла на сервере;
 - IP-адрес сервера.
- 6. Выполните установку новой версии ПО с помощью команды **upgrade-software**. После установки ПО устройство автоматически перезагрузится.

Пример загрузки файла с использованием протокола TFTP и последующей его установки командой **upgrade-software**:

```
router#tftp -1 /tmp/mm-22x v1.11.2.3.img -r mm-22x v1.11.2.3.img -g 192.168.0.111
router#upgrade-software /tmp/mm-22x v1.11.2.3.img
Current software package version is 1.11.2.3
Do you really want upgrade software to version 1.11.2.3 (y/n)? y
Copy etc/TZ
Copy etc/HOSTNAME
Copy etc/hosts
Copy etc/config/udhcpd.leases
Copy etc/config/netconfig.sh
Copy etc/config/udhcpd.conf
Copy etc/config/snmpd.local.conf
Copy etc/config/muxd.conf
Copy etc/config/resolv.conf
Copy etc/udhcpc/sample.bound
Copy etc/udhcpc/sample.renew
Copy etc/udhcpc/simple.script
Copy etc/udhcpc/sample.nak
Copy etc/udhcpc/sample.script
Copy etc/udhcpc/sample.deconfig
Copy etc/shadow
Copy etc/config/syslog.conf
Writing software package... please wait
Do not power off, close terminal or do anything in current session.
Once the connection is broken please wait for 5 minutes, then try to open telnet-
session again.
Erasing blocks: 122/122 (100%)
Writing data: 7808k/7808k (100%)
Verifying data: 7808k/7808k (100%)
Upgrade: rebooting.
```

10.3 Процедура обновления ПО с версий ниже 1.11.2.3

Для устройств группы I с версией ПО ниже 1.11.2.3 обновление ПО выполняется в два этапа:

- 1. Установка переходной версии 1.11.2.3 mig (файл mm-x-mig_v1.11.2.3.tgz);
- 2. Установка рабочей версии 1.11.2.3 или выше (*.img).

Внимание! В случае, обновления ПО с помощью загрузчика необходимо сразу устанавливать версию 1.11.2.3 или выше (файл с расширением img), см. п. 10.4.

Этап 1. Установка переходной версии

- 1. Загрузите файл с переходной версией ПО 1.11.2.3 mig с сайта www.zelax.ru;
- 2. Включите сервер TFTP/ FTP. Скопируйте файл ПО в базовую директорию сервера;
- 3. Подключите устройство к сети. Примеры подключения показаны на Рис. 41;
- 4. Настройте параметры порта изделия (IP-адрес, маску сети и т.д.) для доступа к сети используя команду **ifconfig**;
- 5. Загрузите файл с новой версией ПО с помощью команды **tftp** или **ftpget** в директорию /tmp с сервера, с указанием следующих параметров:
 - имя и местоположение файла в память изделия;
 - имя копируемого файла на сервере;
 - IP-адрес сервера.
- 6. Выполните установку новой версии ПО с помощью команды upgrade-software;
- 7. Перезагрузите устройство, выполнив команду reboot.

Этап 2. Установка переходной версии

- 8. Загрузите файл с рабочей версией ПО 1.11.2.3 или выше с сайта <u>www.zelax.ru</u>;
- 9. Скопируйте файл ПО в базовую директорию сервера;
- 10. Настройте параметры порта изделия (IP-адрес, маску сети и т.д.) для доступа к сети используя команду **ifconfig**;
- 11. Загрузите файл с ПО с помощью команды **tftp** или **ftpget** в директорию /tmp с сервера, с указанием следующих параметров:
 - имя и местоположение файла в память изделия;
 - имя копируемого файла на сервере;
 - IP-адрес сервера.
- 12. Выполните установку новой версии ПО с помощью команды **upgrade-software**. После установки ПО устройство автоматически перезагрузится.

Пример обновления ПО с версии 1.9.0.4 до версии 1.11.2.3:

```
router#ifconfig eth0 192.168.0.1 up
router#tftp -1 /tmp/mm-22x-mig v1.11.2.3.tgz -r mm-22x-mig v1.11.2.3.tgz -g
192.168.0.111
router#upgrade-software /tmp/mm-22x-mig v1.11.2.3.tgz
Current software package version is 1.9.0.4
New software package version is 1.11.2.3
Do you really want upgrade software to version 1.11.2.3 (y/n)? \mathbf{y}
Unpacking, checking and installing software package ... please wait
Do not power off, close terminal or do anything in current session.
If the connection was broken should wait 5 minutes, open telnet-session and reboot.
Execute post-upgrade script
. . .
Upgrade complete
New software will run after reboot
router#reboot
U-Boot 1.2.0-zelax-1.6-svn3027M (Dec 14 2010 - 18:35:16)
I2C:
     ready
DRAM: 32 MB
FLASH: ST M29W640DB 8 MB
      serial
In:
```

```
Out:
      serial
Err:
      serial
Net:
     FEC ETHERNET
Hit any key to stop autoboot: 0
### JFFS2 loading 'uImage' to 0x200000
Scanning JFFS2 FS: .... done.
### JFFS2 load complete: 1454820 bytes loaded to 0x200000
. . .
router#version
_____
Software package version 1.11.2.3 migration
Built at Thu Nov 17 17:37:33 MSK 2011
. . .
router#ifconfig eth0 192.168.0.1 up
router#tftp -1 /tmp/mm-22x v1.11.2.3.img -r mm-22x v1.11.2.3.img -g 192.168.0.111
router#upgrade-software /tmp/mm-22x v1.11.2.3.img
Current software package version is 1.11.2.3 migration
Do you really want upgrade software to version 1.11.2.3 (y/n)? y
. . .
Once the connection is broken please wait for 5 minutes, then try to open telnet-
session again.
Erasing blocks: 122/122 (100%)
Writing data: 7808k/7808k (100%)
Verifying data: 7808k/7808k (100%)
Upgrade: rebooting.
```

10.4 Загрузка новой версии программного обеспечения в режиме загрузчика

Внимание! Загрузка новой версии программного обеспечения в режиме загрузчика осуществляется только в случае сбоя основного программного обеспечения. В нормальном (рабочем) режиме загрузка новой версии программного обеспечения осуществляется согласно п. 10.22.

После загрузки новой версии программного обеспечения в режиме загрузчика все параметры устройств группы I устанавливаются в заводские значения, параметры устройств группы II остаются без изменений.

Процедура описана для версии загрузчика 1.2.0-zelax-1.6-svn3027М и старше. Если в устройстве установлена более ранняя версия, то необходимо обновить загрузчик. Процедура обновления загрузчика приведена в п. 10.5.

Для перехода в режим загрузчика, во время процедуры загрузки ПО изделия необходимо при появлении в окне терминальной программы надписи:

Hit any key to stop autoboot: 3

нажать любую клавишу. После этого в окне терминальной программы появится приглашение означающее, что устройство находится в режим загрузчика:

```
U-Boot 1.2.0-zelax-1.6-svn3027M (Dec 14 2010 - 18:35:16)

I2C: ready

DRAM: 32 MB

FLASH: ST M29W640DB 8 MB

In: serial

Out: serial

Err: serial

Net: KS8995MA

FEC ETHERNET

Hit any key to stop autoboot: 0

>
```

Для обновления ПО выполните следующие действия:

- 1. Загрузите файл с новой версией ПО (*.img для устройств группы I, *.pkg для устройств группы II) с сайта <u>www.zelax.ru;</u>
- 2. Включите сервер TFTP;
- 3. Подключите порт Ethernet изделия к сети. Пример подключения показан на Рис. 41;
- 4. Укажите сетевые параметры устройства (IP-адрес, маску сети и т. п.) с помощью команд:
 - setenv ipaddr <IP-адрес_устройства>
 - setenv serverip <IP-адрес_сервера>
 - setenv netmask <маска_подсети>
 - setenv gatewayip <IP-адрес_шлюза>

Для отображения текущих параметров используйте команду printenv.

5. С помощью команды ping убедитесь в доступности сервера:

```
=> ping 192.168.0.111
FSL UECO: Full Duplex
FSL UECO: Speed 100BT
FSL UECO: Link is up
Using FSL UECO device
host 192.168.0.111 is alive
```

- 6. Укажите имя файла с новой версией ПО используя команду **setenv image-file** <имя-файла>;
- 7. В корневую директорию TFTP-сервера скопируйте файл с новой версий ПО;
- Загрузите новое ПО командой run load-image. Процесс загрузки и обновления может достигать нескольких минут и выглядит следующим образом:

```
> run load-image
Using FEC ETHERNET device
TFTP from server 192.168.0.111; our IP address is 192.168.0.101
Filename 'mm-22x v1.11.2.3.img'.
Load address: 0x\overline{2}00000
******
  ***********
   ******
   *********
   *********
   *********
   *********
   ******
    **********
    **********
    ******
   *********
   *********
  ***********
  done
Bytes transferred = 5154400 (4ea660 hex)
Erase Flash Bank # 1 Done
Copy to Flash... done
>
```

9. После окончания процесса обновления используйте команду **reset** для перезагрузки устройства.

10.5 Загрузка новой версии загрузчика

Внимание! Обновления загрузчика необходимо осуществлять только по рекомендации отдела технической поддержки.

Обновление загрузчика выполняется в режиме загрузчика. Для перехода в режим загрузчика, во время процедуры загрузки ПО изделия необходимо при появлении в окне терминальной программы надписи:

Hit SPACE key to stop autoboot: 3

нажать клавишу «Пробел». После этого в окне терминальной программы появится приглашение означающее, что устройство находится в режим загрузчика:

U-Boot 1.2.0-zelax-1.6-svn3027M (Dec 14 2010 - 18:35:16)

```
I2C: ready
DRAM: 32 MB
FLASH: ST M29W640DB 8 MB
In: serial
Out: serial
Err: serial
Net: KS8995MA
FEC ETHERNET
Hit any key to stop autoboot: 0
>
```

При обновлении загрузчика необходимо строго соблюдать соответствие загружаемого программного обеспечения модификации устройства. Загрузка неправильного загрузчика приведет к неработоспособности устройства и необходимости ремонта устройства на предприятии-изготовителе. Для определения модификации устройства и серийного номера необходимо выполнить команду **show_di**.

Пример выполнения команды для устройства группы I:

```
> show_di
Device info (Ok)
MM-225RC-UNI-AC9
CPU module DMIME-RSE100T-2
Backplane MUX3-240
s/n 2315269000103
MAC 00:1a:81:00:35:c9
>
```

Пример выполнения команды для устройства группы II:

=> show_di
Device info: ok (0)
Hardware ID: 0400:0100:0008
Device type: MM-222RC-UNI2-AC9
Serial number: 2317123456789
MAC: 00:1A:81:00:85:6C
=>

Табл. 23 — Таблица соответствия

Модификация изделия	Вид имени файла
MM-221RC-UNI	mm-x21_u-boot_vX
MM-222RC-UNI	mm-x22_u-boot_vX
MM-225RC-UNI	mm-x25_u-boot_vX
MM-221RC-UNI2	mm-x21_x25_x27_2_u-boot_vX
MM-222RC-UNI2	mm-x22_2_u-boot_vX
MM-225RC-UNI2	mm-x21_x25_x27_2_u-boot_vX
MM-227RC-UNI2	mm-x21_x25_x27_2_u-boot_vX
MM-522RC-UNI2	mm-x22_2_u-boot_vX
MM-525RC-UNI2	mm-x21_x25_x27_2_u-boot_vX

MM-527RC-UNI2-...

mm-x21_x25_x27_2_u-boot_vX

Х — номер версии загрузчика

Внимание! Процедура обновления описана для версии 1.2.0-zelax-1.6-svn3027М и выше. Если в устройстве установлена более ранняя версия, то необходимо обновить загрузчик минимум до версии 1.2.0-zelax-1.6-svn3027M согласно п. 10.6.

Для обновления загрузчика выполните следующие действия:

- Получите файл новой версии загрузчика, обратившись в отдел технической поддержки по электронной почте. При обращении отправьте письмо по адресу <u>tech@zelax.ru</u> с темой «Загрузчик для …", указав модификацию изделия и серийный номер;
- 2. Включите сервер TFTP;
- 3. Подключите порт Ethernet изделия к сети. Пример подключения показан на Рис. 41;
- 4. Укажите сетевые параметры устройства (IP-адрес, маску сети и т. п.) с помощью команд:
 - setenv ipaddr <IP-адрес_устройства>
 - setenv serverip <IP-адрес_сервера>
 - setenv netmask <маска подсети>
 - setenv gatewayip <IP-адрес шлюза>

Для отображения текущих параметров используйте команду printenv.

5. С помощью команды ping убедитесь в доступности сервера:

```
=> ping 192.168.0.111
FSL UEC0: Full Duplex
FSL UEC0: Speed 100BT
FSL UEC0: Link is up
Using FSL UEC0 device
host 192.168.0.111 is alive
```

- 6. Укажите имя файла новой версии загрузчика используя команду setenv uboot-file <имяфайла>;
- 7. В корневую директорию TFTP-сервера скопируйте файл с новой версией загрузчика;
- 8. Загрузите новую версию загрузчика командой **run load-uboot**. Процесс загрузки и обновления может достигать нескольких минут и выглядит следующим образом:

- После окончания процесса обновления используйте команду reset для перезагрузки устройства;
- 10. После загрузки устройства перейдите в режим загрузчика и обновите значения параметров по умолчанию для новой версии загрузчика с помощью команды **eraseenv**;
- 11. Перезагрузите устройство командой reset;
- 12. После загрузки устройства перейдите в режим загрузчика и сохраните значения параметров командой **saveenv**;
- 13. Перезагрузите устройство командой reset.

10.6 Процедура обновления загрузчика с версий ниже 1.2.0-zelax-1.6-svn3027M

Для обновления загрузчика выполните следующие действия:

- Получите файл новой версии загрузчика обратившись в отдел технической поддержки по электронной почте. При обращении отправьте письмо по адресу <u>tech@zelax.ru</u> с темой «Загрузчик для …", указав модель изделия и тип процессорной платы;
- 2. Включите сервер TFTP;
- 3. Подключите порт Ethernet изделия к сети. Пример подключения показан на Рис. 41.
- 4. Укажите сетевые параметры устройства (IP-адрес, маску сети и т. п.) с помощью команд:
 - setenv ipaddr <IP-адрес_устройства>
 - setenv serverip <IP-адрес_сервера>
 - setenv netmask <маска_подсети>
 - setenv gatewayip <IP-адрес_шлюза>

Для отображения текущих параметров используйте команду printenv.

- 5. В корневую директорию TFTP-сервера скопируйте файл с новой версией загрузчика. Имя файла должно быть u-boot.bin;
- 6. Загрузите новую версию загрузчика командой **run load_uboot**. Процесс загрузки и обновления может достигать нескольких минут и выглядит следующим образом:

- 7. После окончания процесса обновления используйте команду **reset** для перезагрузки устройства;
- Обновите значения параметров по умолчанию для новой версии загрузчика используя следующий набор команд:
 - test erase_env
 - reset
 - saveenv
 - reset

Пример обновления загрузчика с версий 1.2.0-zelax-1.4-svn2279 до версии 1.2.0-zelax-1.6-svn3027М:

U-Boot 1.2.0-zelax-1.4-svn2279 (Jul 15 2010 - 13:17:33) CPU: MPC866xxxZPnnA at 100.100 MHz [25.0...100.0 MHz] 4 kB I-Cache 4 kB D-Cache FEC present ready I2C: DRAM: 32 MB FLASH: ST M29W640DB 8 MB In: serial Out: serial Err: serial Net: FEC ETHERNET Hit any key to stop autoboot: 0 > set serverip 192.168.0.111 > run load uboot Using FEC ETHERNET device TFTP from server 192.168.0.111; our IP address is 192.168.0.101

```
Filename 'u-boot.bin'.
Load address: 0x200000
done
Bytes transferred = 268116 (41754 hex)
Un-Protect Flash Bank # 1
Erased 12 sectors
Copy to Flash... done
> reset
U-Boot 1.2.0-zelax-1.6-svn3027M (Dec 14 2010 - 18:35:16)
I2C:
    ready
DRAM: 32 MB
FLASH: ST M29W640DB 8 MB
In:
     serial
Out: serial
Err: serial
Net: FEC ETHERNET
Hit any key to stop autoboot: 0
> test erase env
Erase environment? (y/n)
Erase... Ok
> reset
U-Boot 1.2.0-zelax-1.6-svn3027M (Dec 14 2010 - 18:35:16)
I2C: ready
DRAM: 32 MB
FLASH: ST M29W640DB 8 MB
*** Warning - bad CRC, using default environment
In:
     serial
Out: serial
    serial
Err:
     FEC ETHERNET
Net:
Hit any key to stop autoboot: 0
> saveenv
Saving Environment to EEPROM...
> reset
U-Boot 1.2.0-zelax-1.6-svn3027M (Dec 14 2010 - 18:35:16)
I2C:
     ready
DRAM: 32 MB
FLASH: ST M29W640DB 8 MB
In:
     serial
     serial
Out:
    serial
FEC ETHERNET
Err:
Net:
. . .
```

11 Рекомендации по устранению неисправностей

Изделие представляет собой сложное микропроцессорное устройство, поэтому устранение неисправностей, если они не связаны с очевидными причинами, возможно только на предприятииизготовителе.

При возникновении вопросов, связанных с техническим обслуживанием, обращайтесь в службу технической поддержки компании Zelax. При обращении в службу технической поддержки по телефону, электронной почте или на форуме, будьте готовы предоставить следующую информацию:

- описание задачи или проблемы;
- схему сети и её подробное описание;
- модификации используемых изделий и версии программного обеспечения;
- настройки (конфигурации) всех изделий;
- серийные номера изделий.

12 Гарантии изготовителя

Изделие прошло предпродажный прогон в течение 168 часов. Изготовитель гарантирует соответствие мультиплексора техническим характеристикам при соблюдении пользователем условий эксплуатации, транспортирования и хранения.

Срок гарантии указан в гарантийном талоне изготовителя.

Изготовитель обязуется в течение гарантийного срока безвозмездно устранять выявленные дефекты путём ремонта или замены изделия или его модулей.

Ремонт осуществляется за счёт пользователя, если в течение гарантийного срока:

- пользователем были нарушены условия эксплуатации, приведенные в п. 4.7, или на мультиплексор были поданы питающие напряжения, не соответствующие указанным в п. 4.5;
- мультиплексору нанесены механические повреждения;
- порты мультиплексора повреждены внешним воздействием.

Доставка неисправного мультиплексора в ремонт осуществляется пользователем.

Гарантийное обслуживание прекращается, если пользователь выполнил ремонт мультиплексора своими средствами.

Приложение 1. Назначение контактов портов Ethernet

Номер контакта	Наименование сигнала
1	Тх+ (передача)
2	Тх- (передача)
3	Rx+ (приём)
4	Не используется
5	Не используется
6	Rx- (приём)
7	Не используется
8	Не используется

Приложение 2. Назначение контактов порта Console

Номер	Наименование
контакта	сигнала
1	Не используется
2	Не используется
3	TD
4	Сигнальная земля
5	Сигнальная земля
6	RD
7	Не используется
8	Не используется

Приложение 3. Схема переходника А-006

RJ-45	_		DB-9
RTS	1	7	RTS
DTR	2	4	DTR
TD	3	3	TD
Сигнальная земля	4	5	Сигнальная земля
DCD	5	1	DCD
RD	6	2	RD
DSR	7	6	DSR
CTS	8	8	CTS

Приложение 4. Схема кабеля А-010

Вилка RJ-45	Вилка RJ-45
1	8
2	7
3	6
4	5
5	4
6	3
7	2
8	1

Длина кабеля А-010 — 2 м.

Приложение 5. Назначение контактов клеммной колодки для MM-52xRC-UNI

Внимание! Требуется соблюдать полярность электропитания.

Приложение 6. Назначение контактов клеммной колодки для MM-22xRC-UNI-f-DC60

Номер контакта	Назначение
1	Контакт защитного заземления
2	Контакт для подключения источника питания Полярность неважна
3	Контакт для подключения источника питания Полярность неважна